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TWO FORMULATIONS OF AN ELASTO-PLASTIC PROBLEM* 

F.M. ERLIKBMAN 

Solutions of two elasto-plastic problems are compared when 
stress tensor components are continuous on the elasto-plastic 
and when the tangential component undergoes a discontinuity. 

all the 
boundary 

Let us consider an infinite body with a circular hole of unit radius loaded by a constant 
force U? = --p, 7re = 0. Let the stresses at infinity be determined by the Kolosov-Mushkelishvili 
potential (A,. B,, and B, are real numbers) 

(D(z) = -40, 'y(z) = B, + BzzB 

We assume that the Mises plasticity condition 

((~~--~~)*+4+, = 4ka 

is satisfied in the plastic zone around the hole. 
A discontinuity in the shear component of the stress tensor is generally possible on the 

unknown elasto-plastic boundary I. This circumstance results from non-linearity of the 
condition /l/ on the one hand, and also from the discontinuity of Poisson's ratio during 
passage through the elasto-plastic boundary /2/. 

In the case of continuity of all the stress tensor components on the elasto-plastic 
boundary, we solve the problem by the method described in /3/. Let p1 and (pB be the "plastic" 
and "elastic" Airy functions. Let us introduce the function qa ='pt- 'pl. It follows from the 
definition of the function 'ps /3/ 

f (z) = 4.4, - 4k In z - 2k + Zp, I3 = arg z 

By analogy with /3/ we introduce three analytic functions UQ(~) and y(n) 

0 (n) = cl) + c*/q + c*/$ + 

We obtain the following boundary value problem to determine these functions: 
(i) 

191=1 
1 q 1 _ c-3 

2B0 + 2Bp(c2$ + cc,)- 2k exp(- 2i13,), 1 q 1 - m 

(4 = m3 11) 

Solving the Dirichlet problem (2), we obtain 
'&(q) = -k In q 

It follows from the condition at infinity that ~(c)=o. As 

e(n)="1 /3/, 
2(@J (n))/(o' (n)) @,' (q) = -2k exp (--2i0,) 

Comparing (5) and (3) we conclude that 

'y, (1) = Bo + B, (c=n+ ccl) + Q (q) 

where Q(q) is a regular function outside the circle lql= 1. 
Substituting (4) into (3), we obtain 

0' ('I) 'Y.Y (rl) = kamlq 

Substituting (1) and (5) into this equality, we find 

(3) 

(4) 

CC we find because of 

(5) 

(6) 

(C - C&l” - 2413 - . .)(%c2q2 + (B,cc, + B,) + Q (q)) = k (c/q, + c, + 
c*q + .). ci = Et 
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We multiply the expression in the brackets and we equate coefficients of positive powers 
of q on the right and left-hand sides. The expressions on both sides of the equality (7) will 

here differ by a function that is regular outside Iql== 1 which is evidently allowable /3/. 

Consequently, we derive a system of equations to determine the coefficients in (1) and we 
conclude that the mapping function has the form 

z = " (q) = "I + c,/q + C,/q*. '$ = B&k, ct = B&k (8) 

r: 
We now assume that the shear component of the stress tensor undergoes a discontinuity on 

utP- ate = 4 I/k’--mB (9) 

where OP. @ are the shear stresses from the plastic and elastic zones, respectively, (we 
note that if the one-dimensional problem B,=B,=O is considered, the plastic zone is greater 
in the discontinuous case). The conditions on the unknown boundary take the following form in 
the plane of the complex variable s: 

4Re~((z)~o,“+o~-41/k*-~m~ 

2 [CD (2) + ‘Y (P)] = ((rye - axe + 2ifJ = (ute - on + 2ir,‘) exp (- 2iy) 
(10) 

where y is the angle between the normal to r and the x-axis, and Q(S) and y (2) are 
Kolosov-Muskhelishvili potentials. The quantity ate can be eliminated in the second formula 
of (10) by using (9). The stresses in the plastic zone are known 

I@' = 2k In r - p, a$ = 2k In r- p + 2k. tre = 0 (ff) 

On the Unknown boundary r 
z, = V,(or - ae) sin 2f! = -k sin 2s (12) 

where p is the angle between the normal to r and the radius-vector to I'. 
Substituting (11) and (12) into (10) and taking into account that b-y = --oL. where 0~ 

is the angle between the ,X axis and the radius-vector to r, we find 

4Re @ (z) = 4k In r - 2p + 2k - 4k cos 2g 

2[FD' (z) + Y @)I = 2kr/r - 4k cos 2fi exp (-2~) 

We transfer to the parametric plane of the variable q by using the transformation (1). 
We then obtain the following boundary value problem to determine the three analytic functions 

cp ((1) = Q, (0 (q))* 9 (q) = y (0 (11)) H 0 (q): 

Let us examine the functional equation 

For 
the unit 
zeros of 

2 I(~~$d(q)) cp' (q) + $ WI = F (0 bh G Uh)) (131 

the right-hand side of this functional equation to be an analytic function outside 
circle, it is necessary and Sufficient /4/ t0 require pairwise agreement between the 
the functions 0) and *). 

H (W c:) = 2k ln (4 - 2~ i- 2k - 2.k ((a (q,,/T;;T;ii, + (%%b (‘I))) 

F (0, G”;) = --2k ((~~)P 0 (q) WUo’ W 0 rl’)) 

= bl) = (0’ h) MO (11)) 

We will seek the mapping function in the form 

o (q) = (qa - ba)“c an-1 4 
, m-1 

Substituting this expression intci (13) and expanding all the functions in series in the 
neighbourhood of the infinitely remote points, it can be noted that n= 2. Therefore, the 
mapping function has the form 

61 (q) = C./q - 2bacs/q $ b%,/qs (14) 

and because of the symmetry of the problem b and cQ are real numbers. (For the elastic domain 
to be bounded everywhere with the plastic domain, it is necessary that the circle of unit 
radius, that is the hole contour, be within an ellipse; this results in the condition cs(l- 2bs+ 

b3 > 1). Substituting the specific form of the mapping function (14) into the right-hand side 
of the functional Eq.(13), we find 

F (0, ii!) = -2k (i + 3bVY q’/(q’ + 3b’)*, ( b ) < i/l/V 
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Since, the variable q 

The left-hand side of 

occurs in F(w,B) in an even power throughout, we have 

F = --18kb‘q’+ ol, + a&‘+ . 
(13) is expanded in the form 

2B,c,q*+ 2y, + Y-a/q + . 

(the symmetry of the problem is used). Equating coefficients of '1% in (15) and (16), we 
obtain -18kb = 2B,c,’ 

It is possible to proceed further as follows. We have for the harmonic function &e(q) 
by the mean-value theorem 

H (co, 0) d6 = 4Ao 

0 
(17) 

Let the constants B., B, and ca be known such that the constant b found from(l7)satisfies 
the condition ) bl <l/f37 In this case (18) can be utilized to determine A,. Comparing the 
free terms in (13) we obtain a relationship connecting A,, B, and B,, that can be considered 
the condition for the problem to be solvable for given B,,B, and cI: 

2% = a0 (18) 

Here 
y,, = b'a,' + (B, - 4B,b=c,‘), a0 = --12kb= 

a,’ = - 2ap, 
1 

a, = z 
s 

H (0 (7). O(T)) T dr 
ITI=1 

It follows from (19) that 
B,, = BB,Pc,’ + 2b’(r, - 6kP (191 

We will carry out a parametric investigation of solutions (8) and (14). The solution 
is meaningful when (o(f)1 >l, 1 tI = i and the function e'(q) has no zeros for jq1>1. In the 

"continuous" case, these conditions impose the following constraints 
on the domain of parameter variation: 

x 

~ 

c (1 - B. lk + B,c2/k) > 1, (1 - B,lk - 3B,t/k) > 0 (20) 

c = erp ((4A, - 2p -t 2k)/(4k)) 

2 In the "discontinuous" problem, the corresponding constraints 

\ have the form 
\ 

1 cJ (1 - 2b% + b’) > i, 1 b 1 <l/1/% ba = - Bss*/(Qk) (21) 

\ 
This last relationship (21) shows that the condition Bz < 0 

should be satisfied. In particular, if B,=O and therefore,b=o 
a0 1 2 3 also, then it follows from condition (19) that Bo=O also. Comparing 

the solutions (8) and (14) we see that the elasto-plastic boundaries 
are similar only in the one-dimensional problem (B, = B, = o), which 
are circles of different radii. 

It should be noted that the elasto-plastic problem can also be solved in the continuous 
case by the method of functional equations /4/ utilized to solve the problem in the discontin- 
uous formulation. 

The positions of the elasto-plastic boundary in the continuous (dashed line) and dis- 
continuous (solid line) cases are shown in the figure for A, = 0.632. B, = -0,23,B,= -0.05, k = 1, 

p = 0.2. Initially B, and CQ = 3 were given here. Then A, was determined from condition 
(18) and further B, also from (19). 
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